
Microservice Benchmarking on Intel IPUs running Napatech

Software

Zhuangzhuang Zhou1, Yueying Li1, Stuart Johnson2, Nick Finamore2, Charlie Ashton3, Robert
Cyphers3, and Christina Delimitrou4

1 Cornell University, 2 Intel Corporation, 3 Napatech, 4 MIT

Cloud computing services are increasingly moving from monolithic designs, to fine-grained,
modular microservices [6, 8–10, 12, 13]. Microservices can be hosted and managed both by cloud
operators, e.g., cloud services like Twitter, eBay, Amazon, Netflix, etc. all use microservices, or
they can be designed and managed by end users, running on public or private cloud infrastruc-
tures.

Microservices are appealing for several reasons, including accelerating development and de-
ployment, simplifying correctness debugging, facilitating elasticity, and enabling software hetero-
geneity [4, 7, 12].

At the same time microservices also introduce significant networking overheads, motivating
the need for hardware offloads through the use of Infrastructure Processing Units (IPUs).

This white paper quantifies the performance characteristics of cloud microservices built with
different programming frameworks on an Intel IPU running Open vSwitch (OVS) offload soft-
ware from Napatech.

Open vSwitch (OVS)
Virtualized environments need the ability to forward traffic between Virtual Machines (VMs)

or containers and the outside world.
Open vSwitch (OVS) is software used in virtualized environments to provide network con-

nectivity between the outside networks and the VMs or Containers, or between the VMs running
on the same host. But software-only implementations of OVS are CPU intensive and often un-
able to meet the performance and scale requirements for data center deployments of virtualized
applications.

IntelTM C5010X IPU with Napatech Link-Virtualization™ Software
The Intel IPU C5010X with Napatech Link-Virtualization software is an FPGA-based OVS

hardware offload solution based on Data Plane Development Kit (DPDK). The use of hardware of-
fload results in a significant reduction of CPU cycles required to move network data which results
in much lower overall Total Cost of Ownership (TCO).

1



Figure 1: Packet walkthrough with OVS hardware offload.

How Does It Work?
The first packet of any new flow will fail to match a flow-table lookup in the IPU and must be

forwarded to the OVS running on the host for classification (Slow-path processing). Once OVS
determines the proper handling of the new flow, a flow table entry will be added in both the OVS
software data path and the FPGA data path. The two flow tables are kept always synchronized
by the driver software running in the hypervisor. Once the flow handling rules are programmed,
the initial packet is sent back to the IPU for normal processing.

All subsequent packets from the same flow will be handled by the IPU FPGA (Fast-path) logic
according to the prescribed match/action rule.

Slow-path packet handling consumes host CPU cycles and requires copying data between the
IPU, the host memory-space, and the VM/VNF (Virtualized Network Function).

Fast-path packet handling bypasses sending data to the OVS software running in the host:
instead of transferring data through OVS, the IPU transfers data directly to the memory of the
VNF using Direct Memory Access (DMA) over the virtio data-path. Figure 1 shows the lifetime
of a packet when the IPU is enabled.

Methodology
Table 1 details the specification of the IPU-enabled servers.
Table 2 details the specification of the Intel IPU.
Table 3 details the specification of the Napatech OVS offload software.
We evaluate the performance of the hardware offload on three classes of multi-tier low-latency

applications, built with different frameworks and communication models. These applications can
either be managed by cloud operators, as is the case with Amazon or Twitter’s microservice graph,
or designed and managed by end users running on public or private environments. We identify
three applications that vary in the complexity of their topologies and inter-service dependencies,

2



Server Spec (×2) Inspur Dual Socket
Processors Ice Lake Gold 6338

Cores per Processor 32
Core Freq. (base/turbo) 2.0GHz/3.2GHz

Memory 512GB
Boot Drive 480GB

NVMe Storage 2x or 4x 1.6TB P4610
Lab Network NIC 10Gbe Fortville

IPU Silicom C5010X
OVS Offload Software Napatech Link-Virtualization 4.4

Table 1: Server cluster setup used for benchmarking.

IPU Spec C5010X
FPGA Intel Stratix 10 DX 1100
SoC Intel Xeon D-1612

Network Interface Dual 25 GbE (2 x 10/25 Gbps)
Supported Pluggable Modules SFP+ / SFP28

Host Interface PCIe Gen3 x8 (x16 physical)
On-Board Memory 4GB DDR (FPGA) + 16GB DDR ECC (SoC)

Management PXE and SATA SoC Boot Options
Size Full Height, Half Length (111.15mm x 167.65mm)

Power 75W Max with Passive Cooling

Table 2: Intel IPU specifications.

in the amount of CPU, memory, and network resources they require, and in the frameworks they
leverage for individual service tiers to interact with each other.

• First, we evaluate a three-tier application with NGINX as the front-end webserver, mem-
cached as the in-memory caching tier, and MongoDB as the back-end database in persistent
storage. Fig. 2 shows the architecture of this application. Clients interact with the front-end
webserver (NGINX), which first checks if a key-value pair is cached in memcached. If so, it
returns the value to the client. If not, NGINX interfaces with MongoDB to fetch the output
and additionally cache it in memcached.

• Second, we evaluate a five-tier chain topology built with Dapr’s [2] pub-sub communication
model that uses message passing for data transfers across tiers. Fig. 3 shows the applica-
tion’s topology. Each tier performs CPU-intensive computation for a user-specified amount
of time, before broadcasting its output to the downstream tier.

• Third, we characterize the social network application from DeathStarBench [1, 12], an RPC-
based, multi-tier service that implements a broadcast-style social network, where users can
create posts, follow other users, and browse their timelines. The social network is designed
in the style of Twitter, reuses widely deployed cloud services, like NGINX, Memcached,
and MongoDB, and is driven by an input load that resembles the traffic pattern and user
graph characteristics of a scaled down version of Twitter. Fig. 4 shows the topology of the
social network. All microservices are deployed with either Docker Swarm or Kubernetes

3



OVS Offload Software Spec Napatech Link-Virtualization 4.4
Switching Performance (64B packets) 300Mpps Port-Port / 65Mpps Port-VM-Port

VirtIO Support Fully-Accelerated VirtIO 1.1 with vDPA
Live Migration Support VirtIO 1.1

Host OS Support Red Hat RHEL 8 / Ubuntu Server LTS on Request
OpenStack Support Train + Victoria

DPDK Support 20.11
OVS Support 2.15

Linux NetDev Support Kernel 5.0+
Other Networking Features V(X)LAN / Q-in-Q / Link Aggregation / QoS

Table 3: Napatech OVS offload software specifications.

Figure 2: Microservice topology for the 3-tier NGINX-memcached-MongoDB application.

in single-concerned Docker containers, and communicate using RPC requests (unless other-
wise specified), via the Apache Thrift frameworks.

Users (clients) send requests, which first reach a load balancer, implemented with NGINX.
Once a specific webserver is selected, also in NGINX, the latter uses a php-fpm module to
talk to the microservices responsible for composing and displaying posts, as well as mi-
croservices for advertisements, search engines, etc. All messages downstream of php-fpm
are using Apache Thrift RPCs [5].

Users can create posts embedded with text, media, links, and tags to other users. Their posts
are then broadcast to all their followers. Users can also read, favorite, and repost posts, as
well as reply publicly, or send a direct message to another user. The application also includes
machine learning plugins, such as ads and user recommender engines, a search service using
Xapian, and microservices to record and display user statistics, e.g., number of followers,
and to allow users to follow, unfollow, or block other accounts. The service’s backend uses

4



Tier	1 Tier	2

Tier	3 Tier	4 Tier	5

Dapr Dapr

Dapr Dapr

Client

Figure 3: Microservice topology for 5-tier chain pub-sub service built with Dapr.

Figure 4: Microservice topologies for Social Network.

memcached for caching, and MongoDB for persistent storage for posts, profiles, media, and
recommendations.

Finally, the service is instrumented with a distributed tracing system based on Jaeger [3],
which records the latency of each network request and per-microservice processing; traces
are recorded in a centralized database. We additionally record the utilization of different
shared resources per microservice. The application has been used extensively for studies
of hardware acceleration for networking [14], performance debugging in microservices [11],
and QoS-aware cluster management [15].

5



Server	1 Server	2

IPUIPU

Figure 5: Placement of application tiers on physical servers for the 3-tier service.

Experimental Results

Three-tier TCP-Based Application
Fig. 5 shows the physical placement of each service in the 3-tier application across the two

OVS-enabled servers. We ensure that dependent services are placed on different physical ma-
chines, such that all traffic goes over the hardware offload (Intel IPU), when it is enabled.

Fig. 6 shows the load-latency curves for the 3-tier application, as input load increases when the
offload is disabled or enabled. In both cases we show average and tail (99th percentile) latency.

At low loads, the difference in latency is low, as neither the standard NIC nor the IPU get
saturated. For higher loads, there is a significant difference in latency depending on whether the
offload is enabled or not. When the hardware offload is disabled, the application saturates at
26kQPS (26,000 queries per second), after which point a large fraction of requests get dropped.
When the offload is enabled, the service can reach 28kQPS without a significant increase in la-
tency, and only starts dropping requests after 32kQPS. This means that the same hardware can
accommodate 31% more requests without a degradation in user experience, increasing the in-
frastructure’s resource efficiency. Alternatively, for high loads, e.g., 22kQPS, enabling the offload
achieves 8× lower latency compared to disabling it.

Fig. 7 (left) shows the CPU utilization for each service in the 3-tier application with/without
the hardware offload, as input load increases. In both cases, NGINX consumes the highest amount
of resources, however, when the offload is enabled that number is reduced by 8%-30%; 13% on
average. The results are similar for the two databases as well, although the reduction is less
pronounced, since neither of them are CPU-bound to begin with.

Finally, Fig. 7 (right) shows the amount of network bandwidth consumed with/without the
hardware offload. For the default packet size the application uses, both configurations achieve
similar network bandwidth usage, as most key-value pairs are small. At high loads (over 26kQPS),
when the offload is disabled network bandwidth approximates saturation. To push bandwidth
usage further when the offload is enabled, we alter the default request distribution to transfer
larger objects (roughly double the size), which achieves double the network bandwidth usage.
Object size cannot be increased further due to CPU saturation on the host servers.

6



0

100

200

300

400

500

600

700

800

900

1000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

L
a
te
n
c
y
	(
m
s)

Load	(kQPS)

3-tier	App	(NGINX-Memcached-MongoDB)

No	Offload	(average) No	Offload	(tail)

Offload	(average) Offload	(tail)

31%	higher	load	for	

equivalent tail	latency
8x	lower	latency

for	same	input	load

Figure 6: Mean and tail latency across loads when OVS is enabled and disabled.

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 22 24 26 28

C
P
U
	U
ti
li
za
ti
o
n
	(
%
)

Load	(kQPS)

CPU	Utilization	per	tier	(norm	to	#cores)

NGINX	(no	offload) Memcached	(no	offload)

MongoDB	 (no	offload) nginx	(offload)

Memcached	(offload) MongoDB	 (offload)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16 18 20 22 24 26 28

B
W
	U
sa
g
e
	(
M
B
p
s)

Load	(kQPS)

BW	Usage	(MBps)

No	offload

Offload

Offload	 (larger	objects) 2x	higher	

bandwidth

Figure 7: Average CPU utilization per tier with and without the offload (left), and average network band-
width usage with and without offload (right). The last line shows bandwidth usage with larger objects to
saturate the IPU’s bandwidth.

Five-tier Pub-Sub Application
Fig. 8 shows the physical placement of each service in the 5-tier pub-sub application across

the two OVS-enabled servers. We ensure that dependent services are placed on different physical
machines, such that all traffic goes over the hardware offload, when it is enabled.

Fig. 9 shows the load-latency curves for the 5-tier application, as input load increases when the
offload is disabled or enabled. In both cases we show average and tail (99th percentile) latency.
At low loads the difference in latency is modest, but it increases substantially for higher loads.
When offload is disabled, the application saturates at 120kQPS, beyond which point requests start
dropping. When offload is on, the application saturates at 145kQPS and allows 32% higher load
without an increase in average or tail latency. This is beneficial for cloud providers, as they can
accommodate more work on the same hardware. This is especially important with microservices,

7



Server	1 Server	2

IPUIPU

Tier	1Client

Tier	2 Tier	3

Tier	4 Tier	5

Figure 8: Placement of application tiers on physical servers for the 5-tier pub-sub service.

as the degree of multi-tenancy is much higher compared to traditional monolithic application
design.

Fig. 10 (left) shows the difference in average CPU utilization across the 5 tiers with/without
the hardware offload, across input loads. At low loads the difference is small as neither system
is saturating the available cores. For higher loads (over 60kQPS) the difference becomes more
substantial, and continues to increase as input load goes up. The average difference in CPU uti-
lization between the two configurations is 19.8%. By offloading some of the network processing to
hardware, the host CPU is able to accommodate more requests, achieving better overall resource
efficiency.

Finally, Fig. 10 (right) shows the difference in end-to-end throughput with/without the hard-
ware offload. For the default request size distribution, which primarily uses small objects, the
difference in throughput is small, as neither system is saturated. The configuration without the
hardware offload approaches saturation for loads beyond 130kQPS, and increasing the object sizes
quickly saturates the standard NIC. In contrast, when the offload is enabled, we are able to in-
crease the object size and overall throughput by 2.3× on average before the host CPUs become
saturated. While this still does not saturate the IPU’s bandwidth capabilities, it accommodates
2.3×more data transfers per second, enabling more data intensive low-latency computation, such
as real-time inference and serverless analytics.

RPC-Based Microservice Topology
We now evaluate the network offload on an end-to-end microservice topology implementing

the RPC-base social network. Fig. 11 shows the physical placement of each microservice in the
end-to-end topology across the two server nodes. Microservices are placed, such that all traffic
goes over the hardware offload, when it is enabled.

Fig. 12 shows the benefit of enabling the hardware offload across latency percentiles for the
end-to-end Social Network application. While there is some benefit at high percentiles, the gains
are limited owing to the application primarily transferring small packets, where host CPU is the
constraining factor, and the fact that for larger transfers, the overhead of serialization/deserialization
dominates RPC processing latency. In the discussion section we briefly discuss ways to optimize
small RPC execution in the hardware offload. The difference in CPU usage and network through-
put are similarly low. When the offload is enabled, the server operates at 29.4% average CPU
utilization and reaches 2.1GB/s throughput.

8



0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100 110 120 130 140

L
a
te
n
c
y
	(
m
s)

Load	(kQPS)

5-tier	Pub-Sub	Dapr	app

No	Offload	(average) No	offload	(tail)

Offload	 (average) Offload	 (tail)

32%	higher	load	for	

equivalent tail	latency

6.2x	lower	latency

for	same	input	load

Figure 9: Mean and tail latency across loads when OVS is enabled and disabled for the 5-tier pub-sub
microservice topology.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 110 120 130 140

C
P
U
U
ti
liz
a
ti
o
n
	(
%
)

Load	(kQPS)

Average	CPU	Utilization	across	tiers

No	offload Offload

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60 70 80 90 100 110 120 130 140

B
a
n
d
w
id
th
	(
M
B
p
s)

Load	(kQPS)

BW	Usage	(MBps)

No	offload

Offload

Offload	(large	objects)
2.3x	higher	

bandwidth

Figure 10: Average CPU utilization with and without the offload (left), and average network bandwidth
usage with and without offload (right) for the 5-tier pub-sub topology. The last line shows bandwidth
usage with larger objects to saturate the IPU’s bandwidth.

Discussion

As shown in the evaluation above, the hardware offload offers significant performance and
utilization benefits for low-latency microservices. These translate to both better latency for the end
user, for the same input load, as well as higher resource efficiency for the cloud operator, given
that more work can be accommodated on the same resources, without an increase in observed
latency.

Out of the three examined development strategies for microservices, the pub-sub model dis-
played the highest gains, followed by the TCP-based 3-tier application. The RPC-based topology
experienced modest performance and utilization gains for high latency percentiles.

Given that RPCs remain a popular communication framework for low-latency microservices,
offloading more of the RPC processing stack to the IPU, including serialization-deserialization,
which dominates CPU usage for large packets, as well as optimizing for small data transfers,

9



Server	1 Server	2

IPUIPU

Load

Balancer

Client NGINX

Media

Frontend

Compose

Post
Text

UniqueID URL	

Shorten

Media

User	

Timeline

Post	

Storage

User

User	

Mention

Home	

Timeline

User	

Graph

Figure 11: Placement of application tiers on physical servers for the Social Network topology.

0

5

10

15

20

25

30

35

40

45

50

2000 4000 6000 8000

La
te
n
cy
	(
m
s)

Load	(QPS)

Social	Network	Microservices

90th	pctl	(no	offload) 99th	pctl	(no	offload) 99.9pctl	(no	offload) 99.99pctl	(no	offload)

90pctl	(Offload) 99pctl	(Offload) 99.9pctl	(Offload) 99.99pctl	(Offload)

Figure 12: Different latency percentiles for the social network topology, as input load increases with and
without the Intel IPU enabled.

which are more prevalent in low-latency microservices, can enhance these performance gains in
the future.

10



References

[1] DeathStarBench: Open-source benchmark suite for cloud microservices. https://github.

com/delimitrou/DeathStarBench.

[2] Distributed Application Runtime. https://dapr.io/.

[3] Jaeger: Open-Source, End-to-End Distributed Tracing. https://www.jaegertracing.io/.

[4] The Evolution of Microservices. https://www.slideshare.net/adriancockcroft/

evolution-of-microservices-craft-conference, 2016.

[5] Apache Thrift. https://thrift.apache.org, 2017.

[6] L. Barroso and U. Hoelzle. The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines. MC Publishers, 2009.

[7] A. Cockroft. Microservices: Why, what, and how to get there. In Microservices Workshop All
Topics Deck, 2016.

[8] J. Dean and L. A. Barroso. The Tail at Scale. In CACM, Vol. 56 No. 2.

[9] C. Delimitrou and C. Kozyrakis. Paragon: QoS-Aware Scheduling for Heterogeneous Dat-
acenters. In Proceedings of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). Houston, TX, USA, 2013.

[10] C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Man-
agement. In Proc. of ASPLOS. Salt Lake City, 2014.

[11] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou. Sage: Practical and Scalable ML-Driven
Performance Debugging in Microservices. In Proceedings of the Twenty Sixth International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
April 2021.

[12] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken,
B. Jackson, K. Hu, M. Pancholi, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky,
M. Espinosa, Y. He, and C. Delimitrou. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud and Edge Systems. In Proceedings of
the 24th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), April 2019.

[13] Y. Gan, Y. Zhang, K. Hu, Y. He, D. Cheng, and C. Delimitrou. Seer: Leveraging Big Data to
Navigate the Complexity of Performance Debugging in Cloud Microservices. In Proceedings
of the 24th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), April 2019.

[14] Y. Zhang, W. Hua, Z. Zhou, E. Suh, and C. Delimitrou. Sinan: ML-Based and QoS-Aware Re-
source Management for Cloud Microservices. In Proceedings of the Twenty Sixth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), April 2021.

[15] Y. Zhang, W. Hua, Z. Zhou, E. Suh, and C. Delimitrou. Sinan: ML-Based and QoS-Aware Re-
source Management for Cloud Microservices. In Proceedings of the Twenty Sixth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), April 2021.

11



Acronyms

DDR Double Data Rate (Synchronous Dynamic Random-Access Memory)

DMA Direct Memory Access

DPDK Data Plane Development Kit

ECC Error correction code (memory)

FPGA Field Programmable Gate Array

IPU Infrastructure Processing Unit

OVS Open vSwitch

PCIe PCI Express (Peripheral Component Interconnect Express)

PXE Preboot eXecution Environment

QoS Quality of Service

RPC Remote Procedure Call

SATA Serial AT Attachment

SFP Small Form-factor Pluggable

SoC System on a chip

TCO Total Cost of Ownership

vDPA Virtual data path acceleration

VirtIO virtual input and output

VM Virtual Machine

VNF Virtualized Network Function

12


